
Smarty and the Nasty Gluttons

For this tutorial/monolog you would need:

• My original copy of the game preview ;)

• A real Amiga hardware with at least 1MB chip and one or more floppy drives

• RossiMon

• AsmOne1.02+ or 1.02

• A decent cruncher

• An empty OFS formatted disk

• FS-UAE to make nice screen captures, which also explains some inconsistency with the disk drive

numbering ;)

Just a quick note to readers. My A600 has Kickstart 3.1 and 2MB CHIP and 4MB FAST. All the work was

done on it using the above mentioned tools. Amazing to realize that floppy disks from early -90s still

work just fine and reliably. The screen captures were then done using FS-UAE with A500 with 1MB CHIP

RAM and 1MB FAST setup and also to test the final release under kickstart 1.3.

As a background, a long ago I worked on a game called Smarty and the Nasty Gluttons ;) My

contribution was the boot up procedures, disk system, compression and a disk duplication system (i.e.

use stock Amiga to copy the master disk simultaneously up to four drives). The game got never released

due unfortunate events. With the permission of the current owner of the rights (many thanks Eero!) I

attempt to crack a playable game preview that I found from a box of old disks that used to belong to one

of the game lead developers and make a nice release out of it. Having written the disk system does give

me an upper hand but it was over 20 years ago and I actually never had a playable game previews

before. I did not have to since the toolset given to developers was made to be fully usable without my

intervention.

The cracking method used in this tutorial is going to be very low tech and oldskool – since that’s where I

am stuck at. My method has no room for ActionReplay or UAE but loads of resets and handwritten notes

on a paper. Anyway, let’s start Timo Rossi’s Amiga Monitor (ahh, such a great tool.. and r.i.p Timo) and

insert the game disk into DF0:. As expected we get nasty “read-write error” noises and eventually a

read error, which indicates us the disk has some kind of a non-DOS format. In order the game to boot at

least the track 0 on the lower side, which also contains the boot block, has to be in OFS or FFS format. I'd

assume the disk has OFS format but it is not important since the final crack will be in OFS formatted disk

in any case. First, I read the entire track 0 into CHIP memory address $80000 and write it back to

another disk I have as a DOS file. Next we’ll have a look at what there might be on the boot block. The

code seems to allocate one track worth of CHIP RAM and load the entire track 0 into RAM and then

jump to the allocated memory address + $54. This is rather normal stuff.

There seems to be an interesting code snippet starting at $80062. The code scans through the ExecBase

MemList (i.e. ExecBase + $142, type = NT_MEMORY) and searches for the largest memory area that is

not in the first 512K of CHIP RAM. So any FAST RAM or CHIP RAM beyond $80000 works as an available

memory. The game requires at least 1M of RAM, otherwise it refuses to run (Ed: I took the memory

check code and tried to use it as-is. It appears to bug in some cases with some 512K CHIP RAM only

systems so I had to modify the code a bit for the crack to work properly – everything will crash’n’burn if

there is only 256K of CHIP RAM btw). The code continues to turn off the system, take over the display

and poke known AGA registers to make everything OCS compatible. The code starting at $800cc jumps

to SuperVisor and then checks for the CPU type. If anything better than 68000 is found the VBR is set to

$0. All these steps are probably unnecessary at this point of the system boot but just to be sure I guess.

If the start of additional memory is zero the boot block code jumps to address $80168, where a small

piece of code will decrunch (vanilla StoneCracker S404) some nice graphics and display a screen saying

that at least 1MB is needed. At $80106 the additional memory and its size get stored into memory

addresses $8c and $90. We need to remember those since the game itself uses these addresses to find

memory areas where, for example, to load data. Both USP and SSP stacks are moved to the top of the

found additional RAM. For both stacks $400 bytes are reserved.

The code at address $8011a moves the disk loader to address $c0 (we will study the loader code later in

detail). The entire loader is PC-relative, which will be very useful for us later on when we start extracting

files from the disk. The code at $80134 stores another two values into memory locations $84 and $88.

These are important since later we will find out that address $84 holds the address of the disk loader

(here $c0) and address $88 holds the first available “free memory” address after the loader. Before

jumping into the loader for the first time (at $80146) registers A0, A1 and A2 get loaded with interesting

values. Register A0 contains the address of the MFM buffer, A1 contains an address of a buffer for a

single decoded track, and A2 contains the address of the file table. It turns out that the beginning of the

loader contains a jump table and the first entry of it has to be called in order to initialize the loader.

After initializing the loader the code between $80148 and $8015a loads the file table from the disk. The

size of the file table is $a8 bytes but not all entries contain valid information. I used a typical method of

mine to dump the file table: modified the boot loader code to load the file table into some available

higher CHIP RAM location, rebooted the machine and the copied the table from memory using

RossiMon. No fancy thrills or maneuvers. There are 15 files in the file table instead of possible 21. The

file table is used extensively by the loader and the game. After loading the file table, the code between

$80154 and $80168 loads the first game code into memory starting at $50000. Note that the register D0

gets set to 0, which for the disk loader means to load the first file from the file table. So far we have

learned the following from the loader (assuming when it is located at $c0):

• Calling $c0 initializes the loader:

o A0=MFM buffer address, A1=buffer address for one track, A2=address of file table

• Calling $c4 loads data from disk:

o D0=drive number, D1=number of bytes to load

o A1=destination memory address, A2=byte address on the disk(!)

• Calling $c8 loads data from disk using file table:

o D0=index to the file table

o A1=destination memory address

Before we dwell into the game code, let’s have a look at the loader. There might be something

interesting in it ;) The loader was moved to address $c0 but we can examine it where it is located now

i.e. at $80df6.

The loader starts with a jump table. The routine at $80df6 i.e. $c0 when the game is running, calls the

loader initialization routine at $80e0e. The initialization routine sets up both MFM and track buffer

pointers as well as the file table location.

The routine at $80dfa i.e. $c4 when the game is running, jumps to $80e4c. This routine loads a

requested amount of data (size has to be modulo of 4) directly from disk (any of four drives). The disk is

byte accessed (address has to be modulo of 4 it seems) meaning there is no concept of tracks or sectors

from the caller point of view. We will have a closer look at this specific loader routine later on as it

seems to be more than just a plain track loader.

The routine at $80dfe i.e. $c8 when the game is running, jumps to $8111e. This loader loads, again, a

requested amount of data (size has to be modulo of 4) directly from disk (any of four drives). The disk is

byte accessed (address has to be modulo of 4 it seems). Loader routines at $c4 and $c8 are somewhat

different, although they share many common subroutines.

The routine at $80e02 i.e. $cc when the game is running, jumps to $80e22, which is the routine to load

data/files using a file table. The file table based loader hardcodes the drive to DF0:, which is somewhat

odd.

Finally, the routing at $80e0a i.e. $d4 when game is running, jumps to $813cc and this routine is able to

save one track at a time to a disk. Obviously it is meant for saving hi-scores or such.

Let’s look at the loader routine located at $80e4c. The routine at $80f2e selects the drive, turns on the

motor and initializes most of the disk controller registers. There are a couple of immediate observations

to make. The disk SYNC word is passed in D5 and we can see that it is set to a custom value $2909. The

code between $80e7c and $80e86 looks like calculating the track on a disk, and based on the division

value $18a0 we can assume the track data length is $18a0 i.e. 6304 bytes. The call to $80fe2, which

seeks to a correct track, and later the call to $8110a to start the disk DMA confirms our assumption. So,

we are dealing with a custom disk format with long tracks. Cracking this game just became much more

interesting ;)

The track decoding code starts around address $80ea6. The actual MFM decoder is located at $810aa.

The track format is rather straight forward. A track has no sectors or well, one sector. The track has four

custom SYNC words followed by a track data checksum and then the track data itself.

A note about the code between addresses $80e68 and $80e70. The address $811ee happens to be the

start address of a special StoneCracker S404 decruncher routine. The loader code seems to “reset” the

decruncher to a known state each time a new data/file gets loaded from the disk. Now this is even more

interesting. We are not going to look into the decruncher in this tutorial but what it does is to decrunch

one track worth of data into memory. The decruncher is able to exit itself anytime when it runs out of

data to decrunch saving the exact location where to resume execution next time. Those who are familiar

with Amiga’s executable decrunchers should now immediately say: “ahahhaaa.. doesn’t this look and

taste like Titanics cruncher?!” Now having two buffers in the loader starts to make sense. There is one

buffer for MFM data and one buffer for track holding data to be decrunched!

The code starting at $80ec4 has to do with loading more data after the first read track. If there is more

data (or tracks so to speak) to read from the disk, the call to $810fc advances the drive head to the next

track and start the disk DMA. Without waiting for the disk DMA to finish the loader calls a routine at

$813b6, which decrunches the *previously* decoded track into destination memory. A neat idea to use

the time usually wasted just for polling the disk DMA to finish for something useful like decrunhing. So

this loader is able to decrunch S404 crunched files from disk while loading. It also turns out that the file

table based loader at $80e02 knows the difference between a normal and a crunched file, and based on

that calls either the loader at $80dfa (crunched files) or $80dfe (plain data files). In the file table

crunched files have a negative length. Based on what we have now we can estimate that the custom

disk format is able to store 1002336 bytes of raw data to the disk and assuming all files were crunched

the disk capacity is more than 1500000 bytes (>1.5M). This is of course subject to compression ratio of

individual files but not bad at all..

Anyway, let’s leave the loader for a while and extract files from the disk. We have two ways to do that.

First, just dump the entire disk using the “normal” loader and then extract individual files from the

binary file dump. Second, use the file table based loader to load each file individually and save them. We

will use the latter because it turns out that the crunched files on the disk are preprocessed and not

decrunchable with a normal StoneCracker decruncher routine. Because I am lazy we’ll let the disk loader

to decrunch those files for us. Actually I did both methods because it was easier in that way to find the

decrunched lengths of the crunched files from the disk dump. The file table does not have this original

file length information – just the size of the files on the disk. We also need to extract those files that are

loaded from the boot block and therefore not listed in the file table i.e. the file table itself. The following

simple assembly program (ripper.asm – you can find it in the cracked game disk under “stuff” directory)

does the thing. We just need to load each file one by one and save them to the disk. I am not showing

the parts of the code that save and restore the system. If we take a peek into “normal” files they appear

also be crunched with a normal StoneCracker and have a decruncher code attached to them. For now I

assume these are program files that are cached in RAM and decrunched & run on need to basis. We’ll

see later if the assumption was correct.

After extracting all 15 files they sum up to 1104756 bytes, which will definitely *not* fit into our OFS

formatted disk. The files have to be recrunched but that is for a later phase. Next we will look into the

first loaded game code and what it keeps in. This is the “file 0” in the file table. As we noted earlier the

first game code gets loaded into address $50000. The code at $50000 looks (boringly) normal. It does

load files 1,2,3,4,5,6,7 and 8 into the memory. The file 1 gets loaded into $20f00, which seems to be

next game code to execute. The file 5 gets loaded into $900 and the rest of the files into the additional

RAM that we located during the boot. Later in the game more files are loaded when the player has

completed the first set of game levels. Anyway, the code looks straight forward in a sense that it always

uses the disk loader routines whose entry address is located in address $84 (i.e. where boot block stored

the address of the loader). I’ll take the risk and do not even try to modify the game code but just replace

the track loader with a DOS file loader and hope the game always uses the same interface to access the

disk. There is no sign of saving hi-scores or using any other loader functions than the file table method.

Also, there seem to be no protection what so ever (well.. I did not look too hard for them after all).

Now that I got all files extracted and a good idea how the game code works I can move to the next part

i.e., putting everything together. Those means taking one of my old hardware banging DOS file loaders

and make it behave just like the game code expects the track loader to work. I also add a proper startup

code that zeroes VBR, takes care of caches and makes the video mode OCS. The “new” loader also

includes a fixed memory check so that the game will complain and refuse to run if there is less than 1MB

or RAM available. I took the graphics for the “1MB Needed” from the original boot block and

decrunched it (the graphics was S404 crunched). Since the original game track loader had plenty of work

space (one MFM buffer and one decoded track buffer) at the end of 512K CHIP RAM the new loader can

use those as well for its MFM buffer, sector buffer and decruncher work space (yes, StoneCracker v5

needs $A20 bytes of work space). You can find the “new loader” dosload.S in the cracked game disk

under the “stuff” directory.

I’ll use StoneCracker v5 to crunch all files that were crunched “Titanics style” on the original game disk. I

do not recrunch normal S404 crunched files – since I am just too lazy for that. Unfortunately I’ll lose the

neat decrunch-while-loading feature and crunched files are now loaded entirely first and then

decrunched. It would be too much trouble to recreate the “Titanics style” loader for this crack. Once all

DOS files have been written to an OFS formatted floppy I still got like 20% free, so plenty of space for

intro and the new loader program. The last thing to add is the dumbest possible Startup-Sequence to

load the “new loader” program and we are ready to try the cracked game.

The intro starts and music plays. Great! However, when the actual game is about to start we are greeted

with the infamous Guru-Meditation. Now, what is the problem?

All files worked just fine when tried individually (yes, I tested them all). To cut the furious +30 minutes

debug session short with multiple reboots on my A600 I managed to narrow the issue to a rather

unpleasant discovery. StoneCracker v5 decruncher overwrites the decrunched memory area by two

bytes when the source and the destination memory areas overlap entirely (you cruncher lovers know

what situation I am talking about). Sigh! Those overwritten bytes just happen to be the start of code

located at $20f00. You remember that the game loads one file to $20f00 and another to $900, and in

that order. The latter decrunched file is supposed to end at $20eff but.. I am not in a mood of fixing the

decruncher because it will require some real effort. So there has to be another way to go around the

issue. I could write the overwritten bytes back to memory after decrunching or load crunched files to

some other memory area to avoid overlap situation or reverse the file loading order. I go for the last

option and do small editing/assembling using RossiMon. I was really short of RAM to avoid the overlap

situation and therefore chose reversing the file loading order.

After modifying the game code at $5003a and $500ea I write the file back to a disk. I need to change the

new loader as well to match the new file name. After assembling the new loader some crunching takes

again place. Unfortunately I need to use Windows for this due my laziness. I still got no Amiga binary for

StoneCracker v5. On the other hand crunching these files is blazing fast on my Dell laptop compared to

anything on my 68000 A600 ;-)

Let’s try again.. everything seems to work just fine and the game main screen appears after a while. We

nailed it. However, as a side effect changing the order of loaded files the intro sequence during the

loading is now a bit out of sync. Sorry.

The start screen:

First levels:

First bonus level:

Second levels:

As a summary the only modifications we did to the game were:

• Replaced the boot block based loader with a bootblock intro.

• Extracted the game files from the custom formatted disk and saved them as normal DOS files.

• Replaced the custom format track loader with a DOS file loader.

• And the single modification to actual game code swapping the order of loading files 1 and 5.

Obviously the implementation of the “new loader” took a while, especially as it was entirely done on my

A600. Swapping files between A600 and Windows UAE for making screen captures is somewhat tedious.

Regarding the game it has two sets of playable levels (and bonus levels). You can fool around and shoot

those Nasty Gluttons as much as you want. However, you cannot complete the game or even a single

level. To move from level to another, press the left mouse button. Once you have gone through all levels

you will be greeted that the dream is over and a reboot will follow.

Now that the game works, I can concentrate on adding the crack intro (ahem.. or the Startup-Sequence

text) and stuff to the release version of the game preview you have. All additional material helping to

check what was done to crack this game preview is in the cracked game disk under the “stuff” directory.

The fully commented game disk bootblock disassembly is also there.

The DOS file loader crack approach was inspired by World of Wonder’s Dugger crack by Eurosoft. Not to

mention that crack has the best Amiga crack intro ever! Kudos to Quartex for ultimate Startup-Sequence

style cracks that was blatantly copied here. It is all for fun & nostalgia you know ;-)

The last minute bootblock intro had to be added – a true coder “beauty” after few tiring hours of “how

did I do that again.. grumbles..”. The sources are also on the crack disk under the “stuff” directory as

bootblock.asm.

The infamous Quartex style crack..

MOVEQ #0,D0

RTS

